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Van der Waerden (19304, pp. 128-131) has discussed the problem of carrying out certain field
theoretical procedures effectively, i.e. in a finite number of steps. He defined an ‘explicitly given’
field as one whose elements are uniquely represented by distinguishable symbols with which one
can perform the operations of addition, multiplication, subtraction and division in a finite number
of steps. He pointed out that if a field K is explicitly given then any finite extension K’ of K can
be explicitly given, and that if there is a splitting algorithm for K, i.e. an effective procedure for
splitting polynomials with coefficients in K into their irreducible factors in K[x], then (1) there is
a splitting algorithm for K'. He observed in (19305), however, that there was no general splitting
algorithm applicable to all explicitly given fields K, or at least that such an algorithm would lead
to a general procedure for deciding problems of the type ‘ Does there exist an nsuch that E(n) ? >, where
E is an arbitrarily given property of positive integers such that there is an algorithm for deciding
for any # whether E(n) holds.

In this paper we review these results in the light of the precise definition of algorithm (finite
procedure) given by Church (1936), Kleene (1936) and Turing (1937) and discuss the existence
of a number of field theoretical algorithms in explicit fields, and the effective construction of field
extensions. We sharpen van der Waerden’s result on the non-existence of a general splitting
algorithm by constructing (§7) a particular explicitly given field which has no splitting algorithm.
We show (§7) that the result on the existence of a splitting algorithm for a finite éxtension field
does not hold for inseparable extensions, i.e. we construct a particular explicitly given field K
and an explicitly given inseparable algebraic extension K(c) such that K has a splitting algorithm
but K(a) has not.(2) We note also (in §6) that there exist two isomorphic explicitly given fields,
one of which possesses a splitting algorithm but the other of which does not. Thus the sort of
properties of fields we are interested in depend not only on the abstract field but also on the
particular representation chosen. It is necessary therefore to state rather carefully our definitions
of explicit ring, extension ring, splitting algorithm, etc., and to introduce the concept of explicit
isomorphism (3) and homomorphism. This occupies §§1, 2 and 3. On the basis of these definitions
we then discuss the existence of some fundamental field theoretical algorithms in explicit fields and
their extension fields. This leads also to a classification of the types of extension fields which can be
effectively constructed.
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(1) Provided that K’ is obtained from K by transcendental or separable algebraic extensions only.

(2) This sharpens a result of Kneser (1953) who proved there was no general splitting algorithm for
inseparable extension fields K(«) of explicitly given fields K with splitting algorithms.

(3) In §§5, 6 we give examples of explicit fields which are isomorphic but not explicitly isomorphic.
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408 A. FROHLICH AND J. C. SHEPHERDSON ON

1. EFFECTIVE PROCEDURES

We shall suppose that the symbols used to represent the elements of the algebraic systems
we deal with take the form of finite sequences(4) (which we call words) of elements from
some finite set or alphabet A = {a,, ..., a;} of primitive symbols or letters a,, ..., a,. It is con-
venient to define a fixed (1, 1) correspondence between the words of a given alphabet 4 and
the positive integers which is ¢ffective in the sense that a machine could be constructed which
when supplied with an integer #n would give the corresponding word W (z), and conversely
when supplied with a word W would give the corresponding integer #(W). This can be done
most simply by correlating the integer z with the nth word in the series

Ay Ags +-v5 Qg5 Q1 Q151 Ggy o5 Q1G5 olyy eeey Qolyy ooy Gplyy eey Gl Q101010101 0y -y

obtained by letting a word W, precede a word I, if W] is of lesser length or if ] is of the same
length as W, but the first letter, « (reading from the left), of W] which differs from the corre-
sponding letter, §, of W, precedes f in the preliminary ordering a,, a,, ..., a, of the letters.
We now define a recursively enumerable set of words of 4 to be a set of words W, ..., whose
corresponding numbers (W), ..., form a recursively enumerable set of positive integers,
i.e. the set { f(1), f(2), ...} of values of a general recursive(5) function f(z). Similarly, a set of
words is said to be recursive if the corresponding integers form a recursive set, i.e. a set C'such
thatne C. = . f(n) = 0for some recursive function /. IfSis a set of words of the alphabet 4 we
say there is an algorithm for deciding whether a word of § has the property P if there is
a mechanical procedure for deciding this; more precisely, if there is a partially recursive(6)
function f defined for all integers which are the numbers of words in S,(7) such that if z is
the number of a word in § then f(n) — 0 if and only if the word W{(x) has the property P.
IfS,, ..., S; are sets of words of the alphabet 4 we may define similarly the meaning of the
phrase ‘there is an algorithm for deciding whether the words W}, ..., W, of §, ..., S; re-
spectively, satisfy the relation P(W,,...,W;)’. If § is a set of words of the alphabet 4 and
¢(W) a function (not necessarily single-valued), defined for all We S, whose value is a word
of 4, then we say there is an algorithm for computing a value of ¢(W) for We S if there is
a partly recursive (single-valued) function f(n) defined(7) for all » which are the numbers
of words in S such that if z is the number of a word in § then W( f(r)) is a value of ¢(W(n)).
Functions of several variables are treated similarly.

We shall follow the usual practice of using these precise definitions of algorithm, etc., only
when proving the non-existence of algorithms; when we actually construct an algorithm
we shall merely satisfy ourselves that it can be carried out ‘mechanically’, and rely for the
rest on the assumption (which has by now been extensively confirmed) that ‘general
recursive’ is a satisfactory interpretation of ‘effectively calculable’. The non-existence

(4) In practice we shall violate this convention by using non-linear combinations of symbols involving
sub- and superscipts; we do this in order to depart as little as possible from accepted mathematical symbolism ;
the justification for it is that if we wished we could introduce new symbols 4+ and | and agree that x,, s
were simply to be regarded as abbreviations for x | # ¢ and x 4 v 4 respectively. (Where, as usual in the case
of repeated or mixed sub- and superscripts, one must indicate either by brackets or tacitly the order of their
application.)

(5) In the sense of Kleene (1936).

(6) In the sense of Kleene (1938).

(7) In general such an fwill be defined also for some n which are not numbers of words in S.
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EFFECTIVE PROCEDURES IN FIELD THEORY 409

proofs nearly all depend on Kleene’s result that there exists a recursively enumerable but
non-recursive set of positive integers, i.e. there exists a recursive function A(n)(8), defined
for all positive integers n, such that A(n) =A(m), if n==m, and that the integers m satisfying
(dn) (A(n) = m) form a non-recursive class. We shall often make tacit use of well-known
properties of general recursive functions and algorithms, in particular of the following
basic lemma:

Basic LEMMA. If S is any set of words of the alphabet A and S’ is a recursively enumerable set of
words of A, if for each word W of the set S there exists a word W' of the set S such that (W, W),
if there is an algorithm jfor deciding, for We S, W'eS" whether ¢(W, W') holds, then there is an
algorithm for computing, for We S a word W'e S’ such that $(W, W’). Such an algorithm can be
obtained by enumerating the words of §” one after another and testing each one to see
whether ¢(W, W) is satisfied ; eventually one will be reached for which this is so. A similar
result applies to finite sequences of words.

2. EXPLICIT RINGS

In this section we confine ourselves to rings(9) and fields, since it is only with these
structures that we deal later. But it is clear that similar definitions could be framed for any
type of algebra in the general sense of Robinson (1951) or even for a model of an axiomatic
system of a more general kind containing perhaps elements of infinitely many types.
Following (more or less) van der Waerden we define:

DEFINITION 2-1. A ring R is said to be explicit if its elements are the equivalence classes {P},{Q}, ...,
into which a recursively enumerable (10) set S of words P, Q, ... of some alphabet A is divided by an
* equivalence relation E(P, Q) and if there are algorithms for deciding, for words P, Q, T of S whether
or not the relations {P}={Q} (which is the same as E(P, Q)) {P}+{Q}={T}, {P} x{Q}={T}
hold. An explicit ring which is a field, integral domain, unique factorization domain (u.f.d.), efc., is
called an explicit field, integral domain, u.f.d., etc. Here the operations ‘+°, ‘X’ stand for the
ring operations and ‘=" for the relation of identity of elements of the ring. It is convenient
(and we shall do this in the future) to follow the usual convention and let P = @ (e.g. + = %)
be the relation which holds between words P, @ when they belong to the same equivalence
class (i.e. represent the same element of R) and P+ @, P x @ stand for elements of the
equivalence classes {P}+{Q}, {P}x{Q}.(10a). If it is necessary to distinguish between
operations in different rings we denote the relations and operations for R by the subscript R,
thus, =4, +z, Xz : ' '

The above definition differs from van der Waerden’s(11) in that we allow each element
of the ring to be represented by more than one element of S but impose the condition that
there should be an algorithm for deciding when two words P, @ represent the same element;

(8) Ais used as a constant throughout this paper and refers to a particular function with this property.

(9) By ‘ring’ we mean commutative ring throughout.

(10) This requirement is only apparently weaker than the requirement that § should be recursive since
by mapping the nth element of § onto W(n), we can get effectively to a representation of R in which the
set of representing words is recursive, consisting in fact of the set of all words.

(104) We shall also frequently fail to distinguish between the word P and the equivalence class {P},
e.g. we shall speak of the element P of R when we really mean the element {P} of R. Only if confusion could
arise shall we be careful to distinguish between P and {P}.

(11) Quoted on p. 407.
51-2
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410 A. FROHLICH AND J. C. SHEPHERDSON ON

this is clearly in accordance with practical usage where we use all the symbols 4, £, 3, ... to
represent the same rational number. It differs also in that we require algorithms for
deciding whether P+ Q = T, Px @ = T, whereas he requires algorithms for computing
P+ Q, Px Q. However, these requirements are easily seen to be equivalent; this follows
from the basic lemma and the fact that R is supposed to be a ring so that, for given P, Q,
there do exist 77, 7, such that P4-Q = T}, Px Q = T,. In fact, a similar argument shows
that there is an algorithm for computing the difference P— @ of two elements of R and, in
the case of explicit fields, the quotient P/Q (@ =0).

We shall say that an explicit ring R is explicitly given when the algorithms for generating
the words representing the elements of R and for testing the relations P = @, P4 Q = 7,
Px @ = T are actually given. More precisely we say that the positive integer t is a table of the
explicit ring R(12) when, in some standard recursive enumeration of ordered quadruples of
positive integers,(13) ¢ is the number of the quadruple (t,, ¢,, £, t,>, where ¢, ..., t, define(14)
respectively recursive functions f; (x), f5(%, ¥), f5(%, ¥, 2), f1(%,y, z) such that the set S of words
whichrepresent elements of Ris the set {IW( f,(1)), W(f,(2)), ...} and such that for all positive
ICBEIS 1 W) = W(H®)) .= Lo(xy) =0,

W(H(#)+W(H(©Y) = W) . = Sfi(%y,2) =0,
W(/i1(2) x W(fi(y)) = W(/i(2)) - = . Su(x,9,2) = 0.(14a)
Furthermore, we consider a ring to be given when a table of it is given. It is clear that there
is a general procedure for determining the functions fi, f5, f3, f; from the table ¢, i.e. that
one could construct machines M, M,, M;, M, such that M, when supplied with two positive
integers ¢, x such that ¢ was the table of an explicit ring determining functions f;, f5, /3, f4
would give the value of f;(x), and similarly for M,, M;, M,. So when one is given the table
of a ring one is in a position to perform all arithmetical computations in it. Note, however,
that the correspondence between explicit rings and their tables is one-many, that there is no
algorithm for deciding of a positive integer # whether it is a table of some explicit ring, that
there is no algorithm, applicable to pairs ¢, ¢, of positive integers which are tables of explicit
rings, for deciding whether ¢, #, are tables of the same explicit ring, nor for deciding whether
they are tables of explicit rings which are isomorphic. So although one can perform arith-
metical computations in an explicitly given ring one may not know very much about the
ring; in fact, as we shall see below (p. 418) even if we know that a positive integer £ is the
table of an explicit ring which is isomorphic either to the rational field ¢ or to the field Q(¢)
there is no general method of deciding which of these cases holds.(15) However, there is an
algorithm for finding the zero of an explicitly given ring, i.e. an algorithm which enables
one when supplied with a positive integer ¢ which is known to be the table of an explicit
ring R, to find a word which represents its zero element; indeed, one has only to take any

(12) With respect to some fixed alphabet 4. Clearly if we wish we can always use a single letter alphabet
{a}; in practice it would be more convenient to use the rather large alphabet consisting of all signs available
in print. )

%)13) Say that in which the number of the quadruple (i, %, ts,%,) is @(P(P(4), ty), t3), £,) where

P(%,y) =x+(x+y—1) (x+y—2).
(14) In the sense of Kleene (1936).
(14a) Here ¢ = stands for material equivalence, ‘if and only if”.
(15) In this connexion see Krull’s comment (19534) on Kneser’s paper (1953).
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EFFECTIVE PROCEDURES IN FIELD THEORY 411

word P representing an element of R, and enumerate words ¢ of R, until one is found such
that P+ @ = P. Similarly, there is an algorithm for finding the unit element of an explicitly
given field.(16) ,

We shall say that an explicit ring is an explicit representation of any ring to which it is
isomorphic. We note here that any finite ring has an explicit representation, for we can
represent each element by a different word and write out the addition and multiplication
table in full. The ring of integers has a familiar explicit representation—in the scale of ten,
with alphabet {0, 1, ...,9, —}, the representing words being 0, 1, —1, 2, —2, ..., 10, —10,
11, —11, ..., and the rules for addition and multiplication being the usual ones, which are
well known to be effective. The field of rational numbers also has a well-known explicit
representation where the elements are represented in the form +p/q, p being a non-negative
and ¢ a positive integer represented as above. ‘

In classical algebra it is customary to more or less identify isomorphic rings, since any
algebraic property which one possesses is shared by the other. But this is no longer true of
the non-purely algebraic properties such as effective computability with which we are
dealing; in an arbitrary isomorphism W < W’ there may be no algorithm for finding the
word W’ given W or vice versa. So we define a narrower concept of explicit isomorphy to
replace the classical concept of isomorphy.

2-2. DEFINITION. An explicit homomorphism (isomorphism) 0 of R, {mto

. onto
(isomorphism) P,—0(P,) of R, {(I)Irlltt?)} R, such that there is an algorithm for deciding, for words

P e R, Pye Ry, whether or not Py = 0(P,).

The basic lemma shows that an equivalent definition is obtained by requiring an algo-
rithm for computing 6(P,) instead of for deciding whether P, = #(P,). From this alternative
form of the definition one sees at once thatif 0: R, - R,, 0,: R,—> R, are explicit homo- or
isomorphisms, then so is §,0: R, — R, also that if § is an explicit isomorphism of R, onto R,
then -1 is an explicit isomorphism of R, onto R,. Hence if we make the obvious definition:

} R, is a homomorphism

2-3. DEFINITION. Two explicit rings R, R, are said to be explicitly isomorphic if there is an
explicit isomorphism of R, onto R,. :

We see that the relation of explicit isomorphy is an equivalence relation.

It is clear that in discussing properties concerned with effective computability we usually
do not need to distinguish between explicitly isomorphic rings. Some(17) well-known rings
have the property that all their explicit representations are explicitly isomorphic:

2-4. THEOREM. If R is a finite ring, or the ring of integers, or the field of rational numbers, then all
explicit representations of R are explicitly isomorphic.

Proof. For finite rings the result is trivial; we can simply write out an isomorphism table
containing all pairs of corresponding elements. Suppose then that R, R’ are two explicit
representations of the ring of integers. Let W], W be words of R, R’ respectively representing
the element 1. For each word W of R we can find a positive integer z such that

W =W +...(ntimes) ... W] or W =—(W,+...(ntimes)...W,).

(16) This result does no¢ hold for explicit rings.
(17) But not all, as we shall see in §6.
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Let us associate W with z in the first case and with —» in the other. We now get an explicit
isomorphism between R and R’ by mapping W on W’ if and only if they are associated with
the same integer. A similar treatment may be used for the field of rationals.

We now define the ‘explicit’ analogues of some other classical concepts. Throughout
these definitions R,, R, denote two explicit rings whose elements are represented by words
of the sets .5, S, of the alphabets 4,, 4,.

2-5. DEFINITION. R, is said to be an explicit extension of R, and R, is said to be an explicit
sub-ring of R, if A, Ay, S, 8, and, for Py, Qye Sy, Py =y Q, is equivalent to P, =, Q, and
Py+ @y = o Pyt 1, @2y Py X g, @y =, Py X 2, Q- If, in addition, there is an algorithm for deciding
Jor an arbitrarily given word P of S| whether there exists Qe S, such that P = p Q(18), then R, is said
to be a completely explicit extension of R,. Note that according to this definition an explicit
extension is not necessarily an extension in the classical sense, since the element {F,}, which
corresponds in R, to the element {P,};, of R, may not coincide with it but may contain
additional words. But no error should arise since R, is isomorphic to a sub-ring of R,. It has
the effect that we consider the ring of rationals given in the form p/g to be an explicit
extension of the ring of integers given in the form p/1, even though there are other words
(pk/k) in the ring of rationals which represent these integers. Note that the relation of
(completely) explicit extension is transitive.

2:6. DEFINITION. Two explicit extension rings Ry, R, of R are said to be explicitly isomorphic
over R if there is an explicit isomorphism of R, onto R, in which all elements of R remain fixed.

2-7. DEFINITION. If R, R, are explicit rings and R is an extension ring of R, then R, is said to be an
explicit extension of R corresponding to R if it is an explicit extension of R and if it is (classically)
isomorphic to R over R.

3. EXPLICITNESS OF CERTAIN EXTENSION RINGS

3-1. TueoreM. If R is an explicit ring with identity element then there exists an explicit extension
of R corresponding to the ring R[x] of polynomials in one indeterminate over R; this extension is a
completely explicit extension and is unique to within explicit isomorphism over R.

Proof. Such an extension R, may be obtained by adding new symbols,(19) ‘x’, ‘4,
‘0%, ..., ‘9’, to the alphabet of R, representing the elements of R[x] by words of the form
Py+ P x+P,x*+ ...+ P,x", where P, ..., P, are words of R, and defining equality, addition
and multiplication in the familiar way. This extension is a completely explicit extension,
since the condition that a word of the above form should be equal to a word of R is simply
that all of P,, ..., P, should be equal to zero in R, and there is obviously an effective test for
this. Suppose now that R, is another explicit extension of R corresponding to R[x]. By
hypothesis there exists an isomorphism ¢ of R, onto R[x] over R. Let X be a word of R,
corresponding to the element x of R[x] under §. Given any word P of R, we can enumerate
the elements of R, and corresponding to each element F)+ P x+ P,x*+ ...+ F,x" we can
compute a word(20) Py P, X+ g P, X2+ ...+ B, X" of R, and test whether this is equal
(in R,)) to P. Since each word P of R, is the image under § of some element of R[x] we shall

(18) Le. for deciding whether a given element of R, belongs to R,.

(19) Together with asymbol 4 to deal with thesuperscriptsina?, #°, ... as mentioned in footnote (4), p. 408.
(20) Here P, X stands for P, x p X, and X2 for X x , X.
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eventuallyfindanelement £+ Py x +... + P a"of Rysuch that P=p P+, P X+ ...+ P, X"
The mapping in which each P is mapped on this corresponding element P+ P, x+ ...+ P, x"
of R, is an explicit isomorphism from R, onto R, over R.

By repeated application of theorem 3-1 or by a similar treatment we obtain

3:11. CorOLLARY. The result of theorem 3-1 holds also for the ring R[x,, ..., x,] of polynomials
in n independent indeterminates over R.
For rings of polynomials in &, indeterminates we have:

3:2. THEOREM. If R is an explicit ring with identity element there exists a completely explicit
extension of R corresponding to the ring R[x,, x,, ...] of polynomials in R, indeterminates over R.

Proof. Such an extension R, may be obtained by adding the symbols ‘x°, ‘0, ..., €9’
(together with sub- and superscript symbols 1, | as mentioned in footnote(4), p. 408) to the
alphabet of R, representing the elements of R[x,, x,, ...] by words of the form 7}+ ... +7,,
where each T is of the form Fxj a5 ... xi», P, being a word of R and r,,7,, ..., 7, non-negative
integers (written in the scale of ten), and defining equality, addition and multiplication in
the usual way. We shall see in §6 that in contrast to the finite case the extension postulated
in 32 is not unique. However, if we call the above defined explicit extension R, the standard
explicit extension of R corresponding to R[x,, x,, ...] we obtain, by an argument similar to that
used in the uniqueness part of 3-1: '

3-21. THEOREM. If R, is an explicit extension of R which is isomorphic over R to R[x,, x, ...] by an
isomorphism 0 such that the set Sy, of words of R, which are images under 0 of the set {x,, x,, ...}, is
recursively enumerable, then R, is explicitly isomorphic over R to the standard explicit extension R, of
R corresponding to R[x,, x,, ...]-

3-3. THEOREM. If R is an explicit integral domain then there exists an explicit extension R’ of R
corresponding to the quotient field R of R; R’ is unique to within explicit isomorphism over R; it is a
completely explicit extension of R if and only if R has a divisibility algorithm.(21)

Proof. Add a new symbol ¢/’ to the alphabet of R and take for the elements of R’ words
of the form P or P/Q, where P, Q are elements of R and @ ==, 0.(22) Now define P/Q = ., T/S
ifand only if PX 8 =, Q X T, P/Q =, T if and only if P = @ x ,T, and P —,, Q if and
only if P =, . Define addition and multiplication similarly in the familiar way. Then R’
has the required properties. Since P/Q is equal to a word of R if and only if Q| P it follows
that the extension is a completely explicit extension if and only if R has a divisibility
algorithm. ,

Suppose now that R” is any other explicit extension of R corresponding to R. If W” is any
word of R” we can find(23) a pair of words P,  (Q+0) of R such that W” x @ = ,.P. The
mapping 0§ defined by §(W”") = P/Q gives an explicit isomorphism of R” onto R’ over R.

3-4. THEOREM. If K is an explicit field then there exists a completely explicit extension of K corre-
sponding to the field K (a) where « is transcendental or algebraic over K.

Proof. For « transcendental the result follows from 3-1, 3-3. Suppose now that a is algebraic
and that f(x) = 0 is the irreducible equation for « over K. Let K’ be the explicit extension
of K corresponding to K[x]. Define K” to have the same words and definition of addition

(21) Le. an algorithm for deciding of arbitrary words P, Q(Q #0) of R whether Q|P.

(22) This set of words is easily seen to be recursively enumerable.
(23) By enumerating the pairs P, @ of words of R with @ +0 and testing each pair in turn.
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and multiplication as K’ but to have equality defined by p(x) = -¢(x) if and only if
S(x) | (p(x) —q(x)). Thisis effective since there is a divisibility algorithmin K’. K" is an explicit
extension of K corresponding to K(a). It is a completely explicit extension since p(x) will
represent a word of K if and only if its remainder on division by f(x) is of Oth degree in x, and
this can be tested.

We may sum up these results in:

3-5. TuEOREM. If K is an explicit field and K (o, &y, ..., a,) is a finite extension field of K then there
exists an explicit extension of K corresponding to K(a,, ..., a,); this is a completely explicit extension
and is unique to within explicit isomorphism over K. All finite extensions of prime fields have explicit
representations which are unique to within explicit isomorphism.

Proof. The existence of a completely explicit extension of K corresponding to K(a, ..., ®,)
follows from 3-4. Let now K, K, be two explicit extensions of K, isomorphic to K(a,, ..., ,)
over K by isomorphisms 6, 8. Let W, W,(i = 1, ...,n) be words of K,, K, respectively which
are images under 6, @ respectively of «;. Then the mapping W, W, (i = 1, ..., n) defines an
isomorphism of K, onto K, over K. This is an explicit isomorphism; to see whether W « W

we can proceed as follows: enumerate the rational functions ¢(x,,...,%,)/¥ (%), ..., x,) of
n variables xy, ..., x, with coefficients in K; for each one compute W(W .., W) and if it
is non-zero test ¢( W, ..., W,) [¥(W, W) for equality with W (in K;) ; continue this pro-

cedure until a ¢/y is found for which thls occurs; now test whether (W, ..., W) [y (W}, ..., W)
is equal (in K,) to W; W W holds if and only if this is so.

The existence and uniqueness of the explicit representations of the prime fields themselves
has been shown in 2-4. Suppose now that K| is any extension field of a prime field K and K is
an explicit field isomorphic to K;. Then if W] is a word of K representing the identity element,
the elements W,, W,+W,, ..., W+... (p times) ...+ W,, if K is of characteristic p, or the
elements 0 (i.e. W, —W}), 35Wl, :!:W =+ Wi+ h ..., if K is of characteristic 0, constitute

W + W b m b b b
with the definition of equality, addition and multiplication as in K, an explicit sub-field
of K isomorphic to K. So if K(y, ...,a,) is a finite extension of a prime field K and K is an
explicit representation of K(ay, ..., ®,), then K contains an explicit sub-field K" isomorphic
to K and is easily seen to be an explicit extension of K’ corresponding to K'(«y, ..., ,). The
uniqueness (to within explicit isomorphy) of K now follows from the first result and the
uniqueness of the explicit representations of the prime fields.

By theorems 32 and 3-3 there exists an explicit extension of a given explicit field K corre-
sponding to the field K(x,, x,, ...) obtained by the adjunction of ¥, transcendentals. As we
shall see later this explicit extension is not unique, so it is convenient to call the particular
extension defined via 3:2 and 3-3 (in which we may say the elements are represented as
rational functions of ¥, #,, ...) the standard explicit extension of K corresponding to K(x,, x,, ...).
An analogous result to 3-21 holds for this standard explicit extension.

The uniqueness of the explicit extensions defined in § 3 allows us to introduce the following
convention. If K is an explicit field (or ring), and if R is an explicit polynomial ring, defined
as an explicit extension of K as in 3-1 by introducing the new symbol x to represent the
generating indeterminate of R over K, we shall call R the explicit polynomial extension of K in
the indeterminate x. Similarly, we shall speak of the explicit finite, or standard polynomial extension R
of the explicit field K in the indeterminates x, %y, ..., X,,, or the indeterminates xy, x,, ... ad inf., and of
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the explicit finite, or standard transcendental extension K of K by the independent transcendentals
X1y X9y «.vy X,y OF X1, Xy, ... ad inf. The same convention will also be applied to finite algebraic
extensions, etc.

4. SPLITTING ALGORITHMS IN FINITE AND STANDARD EXTENSION FIELDS

4-1. DEFINITION. The explicitu.f.d. R is said to have a factorization algorithm if there is an algorithm
which, when applied to any word W of R will yield words W, ..., W, representing irreducible elements
of R such that W = Wy x Wy x ... x W,, none of the W, ..., W, being units except possibly when n = 1.

The explicit representation of the ring of integers is well known to have such a factoriza-
tion algorithm.

4-2. THEOREM. The explicit u.f.d. R has a factorization algorithm if and only if it has an algorithm
Sor deciding whether an element is irreducible.

Proof. If W splits into W] X ... x W, as in 4-1 then it is irreducible if and only if 7 = 1.

Conversely, if there is an algorithm for deciding whether an element is irreducible there
is an algorithm for deciding of each element W whether it is (a) reducible, (4) a unit or
(¢) irreducible but not a unit, since if W is irreducible it is a unit if and only if W?2 is also
irreducible. So we can enumerate the irreducible non-units and hence also the finite
products W, x W, x ... x W, of irreducible non-units. We can also enumerate the units.
Since any word W is either a unit or a product of irreducible non-units we have only to
compare it with each element of the preceding enumeration until we find one equal to it;
this gives a factorization of the type required in 4-1.

4-3. THEOREM. Let R be an explicit u.f.d., R, the explicit polynomial extension of R in the indeter-
minates xy, ..., %,, R, the explicit standard polynomial extension of R in the indeterminates x,, Xy, ....
Then if there is a_factorization algorithm in R, there is one in R, (n = 1,2, ...) and in R,,.

Proof. This is essentially a well-known result of Kronecker. Given a polynomial f(«, ..., x,)
we take m greater than its degree, make the substitution x, = ""~'(i = 1, ...,n), factorize the
resulting polynomial in ¢ and examine whether these factors correspond to polynomials in
Xy, ..., %,. (See, forexample,van der Waerden 1930a p.129.) Given an elementof R, we first
find the number 7 of transcendentals xy, ..., ¥, involved in it and factorize it in R, as above.

4-4. DeFINITION. If R is an explicit u.f.d. and R, the explicit polynomial extension of R in the
indeterminate x, then we say R has a splitting algorithm if R, has a factorization algorithm ; we say R has '
a root algorithm if there is an algorithm for deciding whether a given element of R, has a root in R.

So a splitting algorithm is an algorithm for splitting polynomials in one variable over
R into their irreducible factors over R. 4-3 shows that a splitting algorithm implies the
existence of an algorithm for splitting polynomials in several variables into their irreducible

factors. ,
We have the classical result of Kronecker (1882, pp. 79, 80):

4-41. THEOREM. An explicit ring with a factorization algorithm and only a finite number of units

has a splitting algorithm.
We have also the classical result that (any explicit representation of) the rational field

has a splitting algorithm, so:
4-42. THEOREM. All the prime fields have splitting algorithms.
4-43. THEOREM. An explicit field K has a splitting algorithm if and only if it has a root algorithm.

52 VoL. 248. A.
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Proof. The ‘only if” part is obvious; if we can split a polynomial into its irreducible factors
we have only to examine the degrees of these factors to see whether the polynomial has
a linear factor.

For the converse we note first that, since the factors of f(x) are of degree less than or equal
to that of f(x) it is enough to show that for each positive integer r we can decide whether
a given polynomial f{x) has rth degree factors and that we can find them ifit has. Secondly,
we note that it is enough to produce one proper factor of f(x), since we can then find the
quotient g(x) of f(x) by this and apply the same procedure to g(x). Take now the case r = 1.
By hypothesis we can decide whether f(x) has a linear factor. Ifit has we can find one, since
we have only to enumerate the elements W}, I}, ... of K in turn until we find a W such that

J(W) = 0 and then we have x— I/ as a factor. Applying the above-mentioned procedure of
dividing out by the known factors we can in this way obtain all the linear factors of f(x),
i.e. all the roots of f(x) which lie in K. Suppose now that r>1. Let a, ..., , be the roots of
f(x) = 0 in some splitting field of f(x). The rth degree factors of f(x) in any field must be of
the form g(x)=(x—a;) ... (x—a;) for some set of 7},...,7, chosen from 1,2,...,n. Now
consider the coefficients of g(x); the coefficient of x4 is (—1)"; ..., and is a root of the
equation fiy(x) = 0, where k(%) =II(x—(—1)"«; ..., ), the product being taken over all sets

of distinct ¢, ..., ¢,, lying between 1 and n. The coefficients of #y(x) are calculable symmetric

functions of the «; so they can be explicitly evaluated in terms of the coeflicients of f{(x).

Similarly for the coefficientsofx!, ..., "~ 1in g(x) we may calculate polynomials £, (x),..., ,_,(x)

in K[x] such that the coeflicient of #* in g(x) is a root of #;(x) = 0. Each of these equations has

in K only a finite number of roots, all of which, as we have shown above, can be found. So

we obtain a finite number of sets {£;, {,, ..., §,_,} consisting of roots in K of

ho(%) =0,...,0,_1(x) =0

respectively. For each such set we take the polynomial x4 ¢._, 27~ !+ ... §, and test whether
it is a factor of f(x). In this way we shall obtain an rth degree factor of f(x) if it has one; if it
has not we shall discover this.

4-5. THEOREM. Let K be an explicit field, K, (n = 1,2, ...) the explicit transcendental extension of
K by the independent transcendentals x,, ..., x,, and K, the explicit standard transcendental extension of
K by theindependent transcendentals x,, %, ... Then if K has a splitting algorithmso have K, (n = 1,2,...)
and K,

Proof. See van der Waerden (19304, pp. 130, 131); the result for K, follows from the fact
that the coefficients of a polynomial over K, involve only a finite number 7 of the x,, x,, ...,
and that the splitting over K, is then the same as over K,,.

4-6. THEOREM. Let K be an explicit field, K the explicit extension of K by .y, ..., a,, where a, ..., a,
are separable and algebraic over K. Then if K has a splitting algorithm so has K'.

Proof. See van der Waerden (19304, pp. 130, 131).

This does not hold for inseparable extensions (see 7-27) ; however, we have:

4-7. THEOREM. Let K be an explicit field of characteristic p with a splitting algorithm, K' the
explicit extension of K by ay, ..., a,, where ay, ...,a, are algebraic over K. Then K' has a splitting
algorithm if and only if it has a p-th root algorithm, i.e. an algorithm for determining of an arbitrary
element of K’ whether it has a p-th root in K'.
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Proof. The ‘only if” part is trivial, since the element W of K’ has a pth root in X’ if and only
if x# — W is reducible.

For the converse we shall show first that it is sufficient to prove the result in the case
n = 1. For suppose the result is true for n = n,. Let K’ be the explicit extension of K by
&y, ..., a,, and K” the explicit extension of K by a, ..., &, %, ., Suppose that K” has a pth
root algorithm; then this algorithm will say whether an element of K’ has a pth root in K"
and, if it has we can find it and, since K” is a completely explicit extension of K’, we can
test to see whether this pth root belongs to K’. So K’ has a pth root algorithm. So by the
induction hypothesis it has a splitting algorithm. Now it follows from the case n = 1 that
K" has a splitting algorithm.

Suppose then that n = 1, that K’ is the explicit extension of K by a, and that K has a
splitting algorithm and K’ a pth root algorithm. Let g(x) = 0 be the irreducible equation
for ain K[x]. By inspection we can find the highest power of p, say ¢, such that g(x) = g, (x*"),
where g,(#) is a polynomial in K[x]. g,(x) is then irreducible and separable over K, and a#*
is a root of it. If K* is the explicit extension of K by a#’ then, as a separable extension of K,
K* has a splitting algorithm, and K(a) = K*(a#"™", a#*™% ...,a), where a?" satisfies the
irreducible equation x? —a#**' = 0 over K*(a?*"',...,a#"*") for h =0, ...,e—2, and over K*
for 1 =¢—1. By 3-5 K’ is explicitly isomorphic over K to the explicit extension of K* by
a7, ..., a. Hence by the same inductive argument as used above it is sufficient to prove the
theorem for one of these successive adjunctions, i.e. we can assume that « is a root of an
irreducible equation of the form g(x) = x»— W, where W is a word in K. Now let f(x) be
a polynomial with coefficients in K. f(x)# has coeflicients in K and can thus be split into its
irreducible factors in K[x]. Each such factor A(x) is either irreducible in K'[x] or is the pth
power of an irreducible polynomial in K'[x], and the latter is the case if and only if 4(x) is
a polynomial in x# and each coefficient is a pth power in K’, which by hypothesis can be
decided. Hence we can find the irreducible factors of f(x) in K'[x], i.e. K’ has a splitting
algorithm.

In the case where K is a prime field 4-6 holds without the condition that «;, ..., , be
separable. In fact

4-8. TueEOREM. If K is an explicit representation of a prime field and K' an explicit extension of K
by a finite set of elements ay, ..., a,, then K' has a splitting algorithm.

Proof. As pointed out by Krull (19534) any finite extension of a prime field can be
obtained by first adjoining a finite set of independent transcendentals x,, ..., x; and then
making a finite number of simple separable algebraic extensions by £, ..., #;. Theorem 4-8
now follows from 4-5, 4-6 by the uniqueness theorem 3-5 or alternatively from the fact that
Krull has shown that one has an effective procedure for finding xy,...,%,4,, ...,f; from
Ay eney Uy

It is worth pausing here to see to what extent the algorithmic procedures described above
are ‘general’ in the sense that the particular techniques of computation used do not depend
on the particular explicit fields considered. In most of the cases this is fairly clear, so we
shall content ourselves with mentioning only one or two cases which have been commented
on in the literature. The procedure of theorem 4-6 is general to the extent that we could in

theory construct a machine which, when supplied with (1) a table # of the explicit field K;
52-2
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(2) a (description number (see Turing 1937) of a) machine M which effects the splitting
of polynomials with coefficients in K; (3) a table ¢’ of an explicit field K" which is an explicit
algebraic extension of K by a finite number of separable elements «, ...,a,; (4) words
Wi, ..., W, of K’ representing the elements a, ..., a,,(24) ; (5) a polynomial f(x) in K'[x] (given in
the form P+ P, x+...4+P,x™, where P, ..., P, are words of K’), would produce the irre-
ducible factors of f(x) in K'[x]. But the information contained in (4) is very necessary and
there is no general procedure for finding it.(25) In fact thisis true even if we fix K as the usual
explicit representation @ of the rational field and consider only those K’ isomorphic to
either @ or Q(z). In this case data (1), (2) are fixed, so if (4) were indeed unnecessary we
should have a machine M, which when supplied with (3) the table ¢ of an explicit field K’
which is known to be an explicit extension of @ corresponding to either @ or Q(i) and (5)
a polynomial f(x) in K'[x], would tell us whether f(x) was irreducible in K'[x]. To see that
this is impossible(26) define for each positive integer m an explicit field K,, as follows: K, is
obtained by taking the standard explicit extension @, of @ by infinitely many independent
transcendentals x,, x,, ..., leaving addition and multiplication unchanged but altering the
definition of equality of words in the obvious way so as to make x, = 7 if n is the least y such
that A(y) = m,(27) x, = 1 otherwise. Clearly there is an algorithm for computing a table
t, of K. But K, is isomorphic to @(7) if (dy) (A(y) = m) and to @ otherwise, so the poly-
nomial 1+ x2 is reducible in K,, if and only if (qy) (A(y) = m). So if the machine M, existed
we would only have to compute ¢,, feed ¢, and the polynomial 142 into M, and see
whether A, said ‘reducible’ or ‘irreducible’ in order to determine whether (dy) (A(y) = m).
Since there is no algorithm for deciding this it follows that no such machine A, can exist.
This example yields also the result of van der Waerden (19305) that there is no general
algorithm for splitting polynomials over an explicitly given field, i.e. that there is no machine
which when supplied with a table ¢ of an explicitly given field K and a polynomial f{x) in
K[x] will produce the irreducible factors of f(x) in K[x]. Since we have seen this to be the
case even if K is restricted to being isomorphic to one of the fields @, Q(¢) one may ask
whether van der Waerden’s argument (which is essentially taking x2 = p,, the nth prime
number, where we took x, = 1) really shows any difference between the finite and infinite
algebraic extensions of @. It does in the following sense: For explicit fields isomorphic to
finite algebraic extensions Q(ay, ..., ®,) there is a splitting procedure which is general to the
extent that one has a machine which will give the splitting when supplied with the table,
the polynomial, and words representing «,, ..., %,; in the infinite case this fails; there is no
machine which will split polynomials when supplied with the table, the polynomial and
(a description number of) a machine for enumerating words representing a,, a,, ... (and
the corresponding irreducible equations(28)). In §7 we shall see that this result can be
strengthened, that there are particular explicit fields of this type without splitting algorithms,
whereas as we have seen above (4-8) every finite explicit extension of a prime field has a
splitting algorithm.

(24) We do not need to know the irreducible equations satisfied by «, ..., &,—we can find these by a

simple procedure of enumeration and testing.
(25) See Krull (19534).
(26) The following argument is a slight modification of van der Waerden’s proof in (19305).
(27) Where A is the function defined on p. 409.
(28) As a matter of fact these can be found from the «’s as mentioned in footnote (24).
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5. EXPLICITNESS OF ALGEBRAIC DEPENDENCE IN INFINITE EXTENSIONS

We recall the definition of a transcendence basis(28a) of a field K over a subfield K as
a set U of elements of K, such that K is algebraic over K(U), but not over K(U’) for any
proper subset U’ of U.

5:1. DEFINITION. Let K be an explicit extension field of an explicit field K. A set U of words of K is

said to be an explicit transcendence basis of K over K if the set of elements of K represented by words of
U forms a transcendence basis of K over K, and U is a recursively enumerable set.

According to this definition an explicit transcendence basis may contain many words
representing the same element of K. If K is of finite degree of transcendence over K this is
inevitable, but if K is of infinite degree of transcendence we can find an explicit trans-
cendence basis {W( f(1)), W( f(2)), ...} such that, if n==m, W( f(n)) = W(f(m)). In fact,
we have only to take an enumeration W(g(1)), W(g(2)), ... of any given transcendence
basis and define f(1) = g(1), and, for n>>1, f(n) = g(n,), where n, is the least m such that
W(g(m)) =g to any of W( f(1)),..., W(f(r—1)). In view of this remark we see that an
explicit extension field K of an explicit field K which has an explicit transcendence basis
over K, has one of the forms {u,, ..., uy}, or {,, u,, ..., ad inf.}, where the u; are words satisfying
u, =+ git,, for n==m. We shall make tacit use of this remark in future.

Without proof we state the obvious:

5:11. THEOREM. If K is an explicit field, and if for i = 1, ..., 1, K, is an explicit extension of K,_,
with an explicit transcendence basis over K,_, then K, is an explicit extension field of K, with an explicit
transcendence basis over K.

The following definition gives, as will be seen, an equivalent characterization of those
explicit fields having explicit transcendence bases in terms of the existence of an algorithm
independent of any particular basis.

5-2. DerINITION. Let K be an explicit extension field of an explicit field K. An algebraic dependence
algorithm of K over K is an algorithm for deciding for any given finite set T of words of K and any given
word W of K, whether or not W is algebraically dependent over K on T.

5:3. THEOREM. Let K be an explicit extension field of an explicit field K. Then K has an explicit
transcendence basis over K if and only if there exists an algebraic dependence algorithm of K over K.

The proof of this theorem will be based on two lemmas. In both of these K stands for an
explicit field and K for an explicit extension field of K which has an explicit transcendence
basis over K.

5:31. LeMMA. There exists an algorithm to decide for any explicit transcendence (29) basis
U = {uy, uy, ...} of K over K (where u,,=u, for m==n), any finite (or empty) subset U’ = {u; , ..., u; }
of U, and any word W of K whether W is algebraically dependent on U’ over K.

Progf. The algorithm proceeds thus: Enumerate the polynomials in infinitely many
indeterminates 7, x,, x,, ... with coefficients in K. As each such polynomial is enumerated

(284) In van der Waerden (19304) the term ‘algebraic basis’ is used.

(29) As on pp. 410 we suppose the basis is given by being given a recursive function f(n) (or, more
exactly, a positive integer defining f(n)) which enumerates the words of the basis, i.e. such that the basis
consists of the words {W( (1)), W(f(2)), ...}.
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replace ¢by W and each x;by the corresponding #,and determine whether the resulting word
of K is equal to 0. Since W is algebraically dependent on U over K we shall ultimately find a
polynomial ¢(¢, x,, ..., x,) such that ¢ (W, uy, ...,u,) = 0. When such a polynomial is reached
rearrange it as a polynomial in the «’s distinct from ;, ...,; with coeflicients non-zero
polynomials ¥; in ¢, x;, ..., ¥, . Take any of these coeflicients ¥; and replace in it ¢ by W and
x x;, by u;, ..., u; respectively and test to see whether the resulting word of K is equal

il’ ooy Vi i

to zero; W is algebraically dependent on U’ over K if and only if this is so.

5-32. LEMMA. There exists an algorithm to find for any explicit transcendence basis U = {u, u,, ...} of
K over K (where u,,+u, for m=+n) and any word W of K the(30) finite subset Uy of U such that W
is algebraically dependent over K on U, but not on any proper subset of Uj.

Proof. As in 5-31 find a polynomial ¢ (4, %, ..., x,) such that ¢(W,u,, ...,u,) =%0. This
gives W algebraically dependent on uy, ...,u,. U, is a subset of {u,, ...,u,} which obviously
can now be found by applying the procedures of 5-31 to determine the dependence of I/ on
subsets of {«, ..., u,}.

Proof of 5:3. Let K be an explicit field and K an explicit extension field of K having an
explicit transcendence basis U, = {u;, 4,, ...} (where, for m==n,u,,==u,) over K. By 5:31 the
existence of an algebraic dependence algorithm will be established if we can show that there
is an effective method for obtaining, from a given finite set 7, of words of K, an explicit
transcendence basis U and a finite (or empty) subset U’ of U such that a word in K is
algebraic over K(U") ifand only ifit is algebraic over K(7;,'. Such a method may be obtained
by a procedure of successive replacement of elements of the pasis by elements of 7. The
basic step is one by which, starting from a finite set 7' = {#,, ..., £,,} of words of K, an explicit
transcendence basis U of K over K and a finite subset U’ of U, weobtainaset T} = {#,, ..., %,,_ 1},
an explicit transcendence basis U; and a finite subset U] of U, such that a word W of K is
algebraic over K(7 v U’) if and only if it is algebraic over K(7; v Uj). Clearly starting
with T as the givenset Ty = {t,, ..., ¢, }, U as the basis U, and U’ as the empty set we shall, after
my repetitions of the basis step, arrive at a basis U and finite subset U’ of U such that a word
W is algebraic over K(T;) if and only if it is algebraic over K(U’). The basic step is accom-
plished as follows: Find, by the method of 5-32, the subset V' = {u,, ..., %, } of U such that
¢, is algebraically dependent over K on ¥ but not on any proper subset of V. If V< U’ then
take Uy = U, U] = U'. If V¢ U’ let ¢, be the least i such that y,e V, but 4;¢ U’, define U, to
be the same as U except that «, is replaced by ¢, and define U] = U’ v {t,}. It is easily seen
hat U, is an explicit transcendence basis and that U has the desired algebraic properties.

Suppose conversely that there exists an algebraic dependence algorithm of the explicit
field K over its explicit subfield K. If X is of finite degree of transcendence over K then the
existence of an explicit transcendence basis of K over K is trivial. So we may assume that
K is of infinite degree of transcendence over K. Let W( f(1)), W( f(2)), ... be a recursive
enumeration of the words of K. We define g(1) = f(m,), where m, is the least m such that
W( f(m)) is not algebraic over K, and for n>1, g(n) = f(m,), where m, is the least m such that
W( f(m)) is algebraically independent over K of the set W(g(1)), ..., W(g(n—1)). Since
K has an algebraic dependence algorithm over K, g(n) is a recursive function and the set
W(g(1)), ... is an explicit transcendence basis of K over K.

30) U, is easily seen to be unique.
1 Y q
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We now define, for any explicit field K, explicit extension fields X and € of K(31) which
will be used as examples in some existence theorems.

Letp,, ps, ... be the sequence of rational primes in ascending order of magnitude. Let R be
the standard polynomial extension of K in the indeterminates £, x,, ¥,, ... adinf. Let a be
the ideal in R generated by x4z —¢,all n,and b be the ideal in R generated by #47,, —¢, all n.(32)

There clearly exists an algorithm in R for deciding whether a word W of R lies in a. This
allows us to define an explicit ring Ra which is a homomorphic image of R with a as kernel
of the homomorphism. In fact we have only to take the words of Rq as the words of R, define
addition and multiplication in Rq to be the same as in R but define W = . W’ to hold if and
only if W— W'is in a. Similarly there exists an explicit ring R which is the homomorphic
image of R under a homomorphism with kernel 6. To prove this we have only to show that
there is an algorithm for deciding whether a word W of Rliesin b. Such an algorithm may be
obtained as follows: Given a word W of R represent it as a polynomial in ¢ and the x,, i.e. as
a sum of terms of the form ui* ]N[l x%i, where u lies in K. For each ¢ =1, ..., N we now find all
natural numbers 7 such that p,<v;, and for these r we evaluate the corresponding A(r). If
A(r) ==1 for all » with p,<v,, then we write v; = v;, #; = 0. If, on the other hand, A(r;) = ¢ and
£, <V, then v, y; are uniquely defined by v, = p, u;+v,, 0<y;<p,,, and may easily be

) N -— N - . . .. .
computed. We now observe that utﬂﬂlx;’i — uth =R Hl x?iliesin b. Repeating this procedure
i= i=

for all terms of F we can thus derive a polynomial F* such that (i) W—F* lies in b, (ii) the
degree of x,, in F'* is less than p, whenever m = A(n). Hence W lies in b if and only if F'* lies
in b which is easily seen to be the case if and only if F* = 0.

By a purely algebraic argument it is now easy to conclude that a, b are prime ideals, and
that Rs and R have no divisors of zero. Let then € be the explicit quotient field of Ra and
2 be the explicit quotient field of Rs. These are both explicit extension fields of K.

5-4. THEOREM. Every explicit field K has an explicit extension field which does not possess an
explicit transcendence basis over K. In particular (K) is such a field.

Proof. The existence of an explicit transcendence basis would by 5-3 imply the existence
of an algorithm to decide for all m whether x,, is algebraic over K(¢), i.e. an algorithm to
decide whether (dz) (m = A(n)), and we know that no such algorithm exists.

5-5. THEOREM. FEuvery explicit field K has explicit extension fields which are isomorphic over K, but
not explicitly isomorphic over K. In particular the two fields Q(K), Z(K) have this property.

Proof. Let u(n) be a (non-recursive) function of natural numbers, taking no value twice
and having as its set of values the natural numbers not in the set {A(1),4(2),...}. The
Mapping Xy, = %y ) X2,-1 > &,y defines in an obvious way an isomorphism of Q(K) onto
Z(K) over K. Q(K) has the explicit transcendence basis {¢,x,,%;,...,%,,_;,...}. Hence
by 5-3 there exists an algebraic dependence algorithm for Q(K) over K, and the same is
true of any field which is explicitly isomorphic to Q(K) over K. But we have seen in 5-4
that 2(K) has no algebraic dependence algorithm over K. Hence Q(K), %(K) are not
explicitly isomorphic over K. | .

, '(_31_) We shall write X =2(K), Q = Q(K) when it is neccsséry to indicate the dependence of X, Q on K.
(32) See p. 409 for the definition of A. ‘
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5-51. COROLLARY. There exist two explicit fields which are isomorphic but not explicitly isomorphic.

Proof. This is true of Q(K), 2(K) if K is an explicit representation of a prime field, for in
this case ‘isomorphism’ and ‘isomorphism over K’ and, similarly, explicit isomorphism’
and ‘explicit isomorphism over K’ are equivalent.

6. CANONICAL EXTENSION FIELDS

6:1. DEFINITION. Let K be an explicit extension field of an explicit field K. A recursively enumerable
set U = {uy, uy, ...} of words in K is called a canonical basis of K over K, if, denoting the empty set by
U, and the set {u,, u,, ...,u,} by U,,

(1) there exists an algorithm to decide for all n whether u, is algebraic over K(U,_,),

(ii) there exists an algorithm to find, for all n such that u, is algebraic over K(U,_,), an trreducible
equation of u, over K(U,_,),

(iii) K is isomorphic over K to the union of the fields K(U,), all n.

If K has a canonical basis over K then K is called a canonical extension of K.

We have the usual transitivity theorem:

6:11. THEOREM. If fori =1, ...,1, K, is a canonical extension of the explicit field K,_, then K, s
a canonical extension of K.

The importance of the concept of canonical extension lies in the fact that it indicates
a method of constructing infinite explicit extension fields by means of repeated adjunctions
of a single element as in the theorems of §3. In fact assume that K = K|, is an explicit field
and that forn = 1,2, ..., K, is a simple extension field of K,,_,, K, = K,,_,(«,). By the results
of § 3 there exist, for all n, explicit fields K, corresponding to the fields K,,, K, being an explicit
extension of K,_,. (K, is defined to be K,.) The fields K, are then unique to within explicit
isomorphism. We assert, under certain conditions, the existence of a canonical extension
field K of K corresponding to the union of the fields K,. More precisely we assert:

6:12. TueoreM. Let K be an explicit field and K, = K(ay, ., ...) be an extension field of K
such that

(i) there is an algorithm for deciding for each n whether a, is algebraic or transcendental over
K(ay, ..y, ).

(ii) there is an algorithm for finding, for those n such that a, is algebraic over K(w,, ..., a, ),
a polynomial(33) @,(%y, - ., Xy_1,%,) 1 Xy, ..., X, With coefficients in K such that (), ..., %, 1, %) = 0
is an trreducible equation for a, over K(ay, ..., , ;).

Then there is a canonical explicit extension K of K corresponding to K.

Proof. Let K’ be the standard transcendental extension of K by the independent trans-
cendentals x,, Xy, X3, .... We first define inductively a sequence of explicit fields K°, K!, K2, ...
corresponding to the fields K, K(a,), K(a;,®,), .... We put K® = K and for n>> 0 we define K"
as follows: Let P, be the set of words of K’ which are polynomials in xy, ..., x, with coefficients
in K; we define an equivalence relation =, on P, by putting f(x), ..., %,) =,8(%, ..., %,) if

(33) It might seem more reasonable to allow ¢, to be a polynomial in x, whose coefficients were rational
functions of x,, ..., x,_;; however from such a ¢, we can effectively get a polynomial in x,, ..., x, with the
desired properties by multiplying by the least common multiple of the denominators of these rational
functions with coefficients in K, so we may as well assume from the start that we are given a polynomial ¢,
with coefficients in K.
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and only if either (a) «, is transcendental over K(ay, ...,®,_;) and when f, g are expressed as
polynomials in x, whose coefficients are polynomials in xy,...,x,_; these corresponding
coefficients are equal(34) in K*~1, or (4) «, is algebraic over K(«y, ..., ®,_;) and the difference
S(xyy ooy x,) —g(%y, ..., %,) 1S, as a polynomial in x, with coefficients in K»~! divisible by the
polynomial ¢,(x,, ..., x,_,%,) in x, with coefficients in K»~!. We now take as the set of words
of K" the set of elements of K’ of the form f(x,, ..., x,)/g(%y, ..., x,) with g(xy, ..., x,) & ,0, we
define addition and multiplication as in K" and define equality by putting f/g = . f1/g;, if
and only if fg, =, f, g. Itis easily seen by induction that K» is an explicit extension field of K
which is isomorphic to K(«;, ...,,) by the isomorphism defined by x;< ¢, (1 =1,...,2). It
is also clear that K” is an explicit extension field of K"~1. We now define the set of words of
K to be the union of the sets of words of all the K», we define addition and multiplication of
words in the same way as in K’ and we define W =zl#] to be the same as W = ,W, where
n is the least integer such that W, W are both words of K”. K is clearly isomorphic to K, by
the isomorphism defined by x; < o, (i = 1, ...,7); to see that K is an explicit field we note
that a word of K’ can be effectively expressed in the form f(x,,...,x,)/g(%,, ..., x,), where
f; g are coprime; to decide whether it is a word of K we have then only to decide whether
g(xy, ...,%,) = ,0,and to decide when f(xy, ..., %,) [g(®}, ..., %,) =%/1(%1, .-, %,) /81 (%}, - .-, ¥,) WE
have only to decide whether fg, —f; g =,0, so the explicitness of K will be shown if we can
show that there is an algorithm for deciding when a polynomial f(x,, ..., %,) is =, 0. However
our definition of =, shows that this can be decided by a step-by-step procedure involving
the =,_, of certain other polynomials and so on. (In fact the main decision required is as
to whether a polynomial f(x,) from K»~![x,] is divisible by a polynomial ¢,,(x,) from K»~1[x,];
this is true if and only if all the coefficients of the remainder computed by the usual division
algorithm are equal to zero in K"~! and this is easily reduced to the question of the =,_, of
certain polynomials in x,, ..., x,_,.) We see also that K is an explicit extension field of each
of the K and that (by (i), (ii) and the fact that x; < o; gives an isomorphism K < K,) the set
of elements x;, x,, ... form a canonical basis for K over K.

6-1 defines canonical extensions in terms of a particular set of words. In the following
theorem we see that these fields can in fact be characterized by the existence of an algorlthm,
and hence the definition is invariant under explicit isomorphism over K.

6-2. THEOREM. K is a canonical extension field of the explicit field K, if and only if K is an explicit
extension field of K, and
(i) there exists an algebraic dependence algorithm of K over K, and (ii) there exists an algorithm to
find for any finite set T of words in K and any word w(35) in K which is algebraically dependent on T over
K, an irreducible equation of w over K(T).
K(T) here stands for the explicit extension field of K given by adjoining the elements of
T to K. The proof of 6-2 is based on a series of lemmas:

6-21. LEMMA. Let K be any explicit field. Then there exists an algorithm to find, for any explicit
subfield K of K and any element w of K, algebraic over K, an irreducible equation of w over K, if we are
given: (i) an irreducible equation of an element v of K over K, (ii) an irreducible equation of w over K (v).

(34) Itwill be seen from the inductive definition that these coefficients do in fact belong to K-, i.e. that
the set of words of K*~! includes P,_,.
(35) From this point on we change our notation slightly and use lower case letters to denote words.

53 Vor. 248. A.
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Proof. We work in the explicit polynomial extension of K in an indeterminate x. Assume
first that w is separable over K(v), and v separable over K. Let £(x) be the given polynomial,
irreducible in K(v) [x], whose root is w. We can evaluate the symmetric functions in K of the
coeflicients of F(x), using the fact that the symmetric functions of » in K are given by the
coeflicients of an irreducible equation of v in K. Hence we can, in a finite number of steps,
find the norm Fy(x) of F(x) in K[x]. Then we can determine the highest power r of F(x)
dividing F;(x), Fy(x) is then the rth power of the irreducible polynomial in K[x] with root w.
If the degree of Fy(x) is7 we have now only to test the polynomials of K[x] of degree7/r as to
whether they divide F,(x), and after a finite number of steps we are bound to find a factor
F,(x) of Fy(x) of degree 7/r. F,(x) will then be irreducible in K[x] and have root w.

Next we drop the restriction of separability. We may now assume the characteristic of K to
be a prime p. Let g(x) be the given irreducible polynomial in K[x] with root », and f(x) the
given irreducible polynomial in K(v)[x] with root w. Let n = nyp° be the degree, and #, the
reduced degree of g(x). n, and p° can be effectively computed—we have only to find the
highest power p°<n, such that g(x) is a polynomial in x#°. At the same time we can find the
polynomial G(x) such that G(x#°) = g(x). G(x) is a polynomial in K[x] irreducible in K[x]
and having root 7 = »#*. By repeated trials we then obtain in a finite number of steps the
least possible integer /such that ( f(x))! = f(x) has coefficients in K (7). Infact{<p?. f(x) isirre-
ducible in K(7), for if f(x) = d(x) d,(x), where d(x), d,(x) € K(7) [x] and d(x) is of degree >0,
then f(x) | d(x). Hence d(x) = f(x)?.d,(x), where (d,(x), f(x)) = 1. But d,(x) | f(x). Hence
d,(x) is a constant, ¢ = /, and so d,(«) is also a constant.

Let now m = myp" be the degree of f(x) and m, be its reduced degree. Again we can find
the polynomial F(x) such that F(x#") = f(x). F(x) is irreducible in K(7) [x], and has the
root w = w?". Also both F(x) and K(7) are separable. Hence, as was proved earlier, we can
find the polynomial F,(x), irreducible in K[x], having root @. Finally f,(x) — F,(x#") is the
required polynomial in K[x], irreducible in K[x] and having root w.

6-22. LEMMA. Let K be an explicit field. There exists an algorithm to find, for any explicit subfield K of
K, and for any elements v, w of K algebraic over K an irreducible equation of w over K, and of v over K (w),
if we are given (i) an irreducible equation of v over K, and (ii) an irreducible equation of w over K (v).

Proof. Let the given equation of v over K have degree 7, and the given equation of w over
K(v) have degree m. By 6-21 we can find an irreducible equation of w over K. Let its degree
be M. As we have [K(v,w):K(v)] [K(v):K] = [K(v,w):K(w)] [K(w):K], it follows that
v must satisfy an irreducible equation of degree N = m.n/M over K(w). All we have to do
then is to test the polynomials of degree N in K(w) [x] until we find one with root ». This will
be the required polynomial.

6-28. LEMMA. If the explicit extension field K of the explicit field K has a canonical basis over K,
then it has an explicit transcendence basis over K. Hence by 5-3 there exists an algebraic dependence

algorithm of K over K.
Proof. Let U = {u;,u,, ...} be the postulated canonical basis. If K has finite degree of

transcendence over K the result is trivial so we may assume that K is of infinite degree of

transcendence over K.
We define f{1) = minm, such that u,, is transcendental over K(U,,_,);

Sf(n+1) = minm>f(n)
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such that ,, is transcendental over K(U,,_,). Then, by 6-1 (i), f(n) is a recursive function,
and {us (), %7(z), ...} is an explicit transcendence basis of K over K.

Just as an explicit ring is determined by four recursive functions (see pp. 410) so a
canonical basis is determined by three functions, namely: (i) a recursive function f{z) which
enumerates the basis U = {W( f(1)), W(f(2)), ...}, (i) a recursive function g(n) such that
g(n) = 0 if and only if u, is algebraic over K(U,_,), (iii) a partial recursive function 4(z),
defined for those n such that g(rn) = 0, whose value denotes in some way(36) an irreducible
equation of u, over K(u,_,). As on pp. 410 let us call such a set of three functions, or more
precisely some positive integer defining them (in a similar manner to that used in pp. 410),
a table of the canonical basis.

6-24. LEMMA. There is an algorithm by which, when supplied with (the table of) a canonical basis

U = {u;, uy, ...} of K over K, a non-negative integer n and an element w of K algebraic over K(U,), we
obtain an irreducible equation of w over K(U,).

Proof. Enumerate the rational functions f(x, ..., &,) /g(%y, ..., %,,) of ¥}, %, ... with coeflicients

in K. For each of these test whether g(uy,...,u,) =%0; if it is not then test whether

Sluyy ..su,,)/g(uy, ..., u,) = gw. Since there exists a rational function f/g with this property

it follows by the basic lemma that we shall eventually find one. We then have, for some m,

an irreducible (linear) equation x—f{u,, ..., %,,) /g(4y, ..., u,,) = 0 for w over K(U,,). If m<n

this is also the desired irreducible equation for w over K(U,). If m>n we apply the pro-

cedure of 6-21 m—n times in order to get an irreducible equation for w over K(U,).

6-25. Lemma. If U = {u,, uy, ...} is a canonical basis of K over K and w is any word of K then
V = {w,u;,u,, ...} is a canonical basis of K over K and there is an algorithm for obtaining (a table of )
V from (a table of ) U and w.

Progf. We have to show there exist algorithms for deciding for all » whether «, is algebraic
over K(U,_;u{w}), and in case it is, for producing a corresponding irreducible equation.
The existence of the first algorithm follows immediately from the fact (6-23) that K has an
algebraic dependence algorithm over K. The existence of the second algorithm follows
from 6-22, 6-24. ‘

Proof of 6-2. Suppose K is a canonical extension of K. We have already shown (6-23)
that K has an algebraic dependence algorithm over K so it only remains for us to show that
there is an algorithm for providing, given a finite set 7"of n elements of K and an element w of
K algebraic over K(T), an irreducible equation of w over K(T"). Such an algorithm is the
following : By successive applications of the procedure of 6:25 we can obtain, starting from
a given canonical basis U, another basis U such that U, = T. The procedure of 6-24 applied
to U, n, w will now give the desired irreducible equation.

Conversely suppose that K is an explicit extension of K satisfying (i), (ii) of 62. Then any
recursive enumeration {W( f(1)), W( f(2)), ...} of the words of K is a canonical basis of K
over K.

6-26. COROLLARY. If K is a canonical extension of an explicit field K, and T a finite set of elements
of K, then K is a canonical and completely explicit extension of K(T').

(36) E.g.‘ by being the number, in some standard enumeration of the finite sets of positive integers, of
the set {n(W,), n(W,), ..., (W})} of numbers of the words W, ..., W, which are the coefficients in the
irreducible equation W, + Wyx+ ...+ W,xk~1 =0 for u, over K(u,_,).

53-2
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Proof. If U is a canonical basis of K over K, with U, = T, then {u,,, %, -..}is a canonical
basis of K over K(T).

If w is an element of K algebraic over K(7'), then we K(T) if and only if its irreducible
equation over K(7'), which can be found by 6-2, is linear.

To show that the concept of canonical extension is in fact narrower than that of explicit
extension with explicit transcendence basis, and also to show that isomorphic canonical
extensions are not necessarily explicitly isomorphic we again construct a number of examples.

Let K be any explicit field. Let ® = @ (K) be its standard transcendental extension by the
independent transcendentals x;, x,,.... Let ¥ = W(K) be the subfield of ® generated by
K and #2, x,,y,all n. The set of generators x2, x, ,,, all #, of V" over K is recursively enumerable.
Hence the set of words of W is recursively enumerable. So, since all fundamental field
operations in ¥, i.e. addition, multiplication, and equating, are the same as in ® it follows
that W'is an explicit subfield of ®. We then have

6-3. TaEOREM. D is an explicit extension field of the explicit field \¥" with an explicit transcendence
basis over V', but it is not a canonical extension of V.

Proof. @ is algebraic over W, hence it has an explicit transcendence basis over ¥, that is,
the null set. But there exists no algorithm to decide for arbitrarily given n whether
(dm)(n = A(m)), i.e. whether x,e¢ ¥". Hence by 6-26 @ is not a canonical extension of V.

We now give another example, not involving transcendental extensions. Let @ be an
explicit representation of the rational field, let K, be the field Q(a,, &y, ...), where a2 = p, (),
and let K, be the field Q(f,,/,,...), where f2=p,. By 6-12 there exists a canonical
extension A of K with canonical basis {«,, ,, ...} such that A is isomorphic to K, via the
isomorphism defined by 4; <> «; (1 = 1, 2, ...), and similarly there exists a canonical extension
IT of K with canonical basis v;, vy, ..., such that /7 is isomorphic to K| via the isomorphism
defined by v;<»f;. The mapping u, v, ,, defines an explicitisomorphism of A into /7. Theimage
of A under this isomorphism will be an explicit subfield A of 77. Just as in 6:3 we can show:

6:31. THEOREM. 7 is an explicit extension of A with an explicit transcendence basis over A, but
it is not a canonical extension of A.
Finally we prove:

6-32. THEOREM. Let the explicit field K have a splitting algorithm. Then ®(K) and V'(K) are
canonical extensions of K, isomorphic over K, but not explicitly isomorphic over K.

Proof. @ is clearly a canonical extension of K. But ¥ also has a canonical basis over K,
namely ¥ = {y,,9,, ...}, where ¥,, = X)(,), ¥2,_; = ¥2. In fact y,, satisfies an equation over
K(Y,,_,)if and only if #%,,, occurs in the set ¥,,_,, i.e. if and only if A(r) <, which can clearly
be tested ; also y,,_, = #2 satisfies an equation over K(¥,,_,), ifand only if n = A(m) for some
m<n—1 and again this can be tested. At the same time it is clear that when y,, is algebraic
over K(Y,,_,) we can also find its irreducible equation.

®(K) is an extension of K by the independent transcendentals x,, x,, ..., and W(K) is an
extension of K by the independent transcendentals x,,, 2, where m runs through all
integers not of the form A(n) for any n. Hence ®(K), ¥'(K) are clearly isomorphic over K.
But they are not explicitly isomorphic. For by 4-5 ®(K) has a splitting algorithm, while in
W(K) there evidently does not even exist an algorithm for splitting the polynomials of the
form #2—x2.
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6-32 provides an example for the non uniqueness of canonical extensions. However by
imposing a purely algebraic condition we can enforce uniqueness in a strong sense:

6-4. DEFINITION. An algebraic extension field K of a field K is said to be strongly adtomorphic if
every isomorphism of a finite subfield K(a.,, ..., «,) of K into K over K can be extended to an automorphism
of K over K.

6-41. Lemma. K is strongly automorphic over K if and only if for every field K* isomorphic to
K over K every isomorphism of a finite subfield K («,, ..., ,) of K into K* over K can be extended to an
isomorphism of K onto K*.

Proof. Trivial.

6-42. LEMMA. Every normal algebraic extension K of K is strongly automorphic over K.

Proof. This is a well-known result of Galois Theory.

Trivially we have:

6-43. LEMMA. Every algebraic extension K of K, such that the only isomorphism of any subfield
K’ of K into K is the identical one, is strongly automorphic.

6-44. THEOREM. Let K be a canonical extension of an explicit field K corresponding to an algebraic,
strongly automorphic extension field of K. If K, is an explzczt extension of K, which is isomorphic to K
over K, then K| is explicitly isomorphic to K over K.

Proof. We use the well known fact that if the algebraic extension K of K is isomorphic
over K to a field K*, then every isomorphism of K into K* over K is an isomorphism onto K*.

An isomorphism of K over K into K, is uniquely determined by the images of the elements
Uy, Uy, ... where U = {u;, u,, ...} is a canonical basis of K over K. It thus suffices to show that
there exists an algorithm to find for all #, and for any mapping 8, of the set U, into K, which
defines an isomorphism of K(U,) into K,, a mapping 0,., of U, ., into K, which deﬁnes an
isomorphism of K(U,,,) into K, such that 6,(x,) = 0,,,(s,), for r<n.

Assume then that 6§, is given in the prescribed manner. Let f(x) be the given irreducible
polynomial in K(U,) [x] with root u,,,. Let ,(f(x)) =f,(x) be the polynomial in K,[x]
obtained by applying the isomorphism @, to the coefficients of f{x). By 6-41 there exists
aroot of fi(x) in K,. If we now enumerate the elements of K, in turn we must after a finite
number of steps find one element, say w, such that f;(w) = , 0. We put 0, ,,(«,) = 0,(x,) for
r<mn, 0,,,(4,,,) = w. Then 6,,, clearly defines an isomorphism of K(U,.,) into K.

6-45. CorOLLARY. If K is a normal, algebraic, canonical extension of an explicit representation K of
a prime field, then every explicit field isomorphic to K is explicitly isomorphic to K.

Proof. By 6-44, 6-42 and the uniqueness of the explicit representation of a prime field.

To give an example of a non-normal field extension for which the conditions of 6-44 are
satisfied we use 6-43. Let @ be an explicit representation of the rational field. Let p,, p,, ...
be the sequence of natural primes, and let K, = @, K, = K,,_,(»,) with 43—p, = 0. Then
the field K with canonical basis {u;, u,, ...} as defined in 6-12 satisfies the conditions of 6-43.

We finally construct an example of an algebraic extension field of the rationals which has
two non explicitly isomorphic explicit representations. We first need:

6:51. LEMMA. There exists a recursive function u(n) taking no value twice such that there is no
algorithm for saying correctly of a given positive integer m either “ if there exists an n such that m = u(n)
then n is even’ or “if there exists an n such that m = p(n) then n is odd’.

53-3
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Proof. Let G, H be two non intersecting recursively enumerable sets which are recursively
inseparable, i.e. such that there exist no recursive sets G,, H, satisfying G= G,, Hc H,,
G\n H, = ¢. (The existence of such sets is easily shown; see for example (Trachtenbrot
1953).) Let g, & be recursive functions enumerating G, H respectively without repetitions.
Define forn = 1,2, ..., 4(2n) = g(n), u(2n—1) = k(n). This function x satisfies the conditions
of the theorem since the existence of an algorithm of the type mentioned would imply the
existence of two recursive sets E, O, consisting respectively of those m for which the answer
is ‘even’, ‘odd’, such that En O = ¢, G< E, H= O, contrary to the recursive inseparability
of G, H. -

Now let K be an explicit representation of the rational field. Let K be the canonical
extension of K with the canonical basis U = {u,,u,, ...}, where 42—p, =%0. Such a field
exists by 6-12 and is essentially unique by 6-44. Let K’ be the canonical extension field of K
with canonical basis V = {v,,v,, ...}, where v3—u,,, = &0, and K" the canonical extension
field of K with canonical basis W = {w,, w,, ...} where w} —(—1)"u,,, =0, #(n) being the
function defined in 6-51. Both these fields exist by 6:12, and are essentially unique by 6-44.
We then have

6:52. Tueorem. K’ and K" are isomorphic canonical algebraic extensions of K, but they are not
explicitly isomorphic.

Proof. K’ and K” are clearly algebraic over K. By 6-11 they are canonical extensions of K.

The automorphism of K defined by u,,,) = (— 1) 4,9, Uy, = 4y, if m==p(n), can be extended
to an isomorphism v, —w, of K’ onto K”. '

Suppose now that there exists an explicit isomorphism 6 of K’ onto X”. The only roots of
x2—p. =0 in K’ and K" are +u,. Hence for all m, 6(u,) = +u,. The only roots of
x*—p,m =0in K’ are +v,,and in K" are 4-w,. Hence 0(v,) = L w,, and 0(u,y) = (—1)" 11,
If m is any integer we can thus find 6(,,) = 4-u,, and depending on the sign appearing we
can say ‘if m = u(n) then = is even (odd)’, which is impossible.

7. SPLITTING ALGORITHMS IN EXPLICIT EXTENSION FIELDS

7-1. TueoreM. If K is a completely explicit extension of an explicit field K and K has a splitting
algorithm then so has K.

Proof. Let K[x], K[x] denote explicit polynomial extensions in x of the fields K, K. Let
f(x) be an element of K[x]. We can find its irreducible factors in K[x]. Forming the various
products of these factors we can decide for each polynomial of K[x] obtained in this way
whether it lies in K[x]. As there are only a finite number of such products to be considered
we get after a finite number of trials a non-constant irreducible factor of f(x) in K[x]. Hence
K has a splitting algorithm. '

The converse of 7-1 is not true however, even if the condition that K be a completely
explicit extension of X is strengthened to the condition that K be a canonical extension of K.
In fact:

7-11. TueoREM. If K is any explicit field then K has a canonical extension which has no splitting
algorithm. ‘

Progof. Take the canonical extension ¥'(K). We have seen in 6-32 that this has no splitting
algorithm.
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The field ¥'(K) is a transcendental extension of K. However for some(37) explicit field K
with splitting algorithm it is also possible to find an algebraic extension of K without splitting
algorithm. In fact

7-12. THEOREM. There exists a canonical extension Sield of the rational ﬁela’ wlzzc/z is algebraic but
has no splitting algorithm.

Proof. The field A defined in §6 has this property since there is not even an algorithm for
splitting polynomials of the form x2—p,.

Our next and last example is that of a s1mple, non-separable, algebraic, explicit extension
field K of an explicit field K, such that K has a splitting algorithm but K has not.

Let A be an explicit representation of GF'(2). Let K, be the standard explicit extension
field of A by the independent transcendentals x,, %, 4;, ¥5, Y5 -.. and let K be the canonical
extension of K, with canonical basis {u;,u,...}, where u2—x,,—#%,y2= ;0. Finally let
K = K(v) where »2—x, =%0.

We first prove:

7-21. LEMMA. K has no splitting algorithm.

Proof. K, is a purely transcendental extension of A by the independent transcendentals
Xgs X1, Y15 ... If Weput z, = u, —vy,, then z2 = x,,yand K is a purely transcendental extension
of Ain the independent transcendentals v, z,, 2,, ..., ¥;,¥s, ..., and x, for all n not of the form
A(m) for any m. Thus £2—x, has a root in K if and only if (dm) (A(r) = m). But there is no
algorithm for deciding this.

7-22. LEMMA. Let K' be a subring of K which ts the ring extension of A by elements

Xos %j o Yip i (=1, ..,m; v =1,...,m), (7-221)
where, for all p, v, JuFAG); (7-222)

then K’ is a polynomial ring over A in the algebraically independent indeterminates (7-221).
Proof. Let K’ be the subring of K which is the ring extension of A by the elements -

v, J/,’.’I/z,, x/\(z,,) ‘ (7‘223)

By the definition of K, and by (7:222), K’ is a polynomial ring over A in the m+2n-+1
independent indeterminates (7-223). Observing that any algebraic relation over A between
the indeterminates v _ ,

| Vs %5 > Yiyp Uy, — VWi, (p=1,...,myv=1,....n) (7-224)
could, by squaring and substituting (¥, —vy; )® = x,,, give such a relation between the
elements (7-223), it follows that the ring extension of A by the elements (7-224) is again
a polynomial ring over A in the m+-2n+-1 independent indeterminates (7-224), or, equally
well in the independent indeterminates

v, xjﬂ, yiv', u,y. (7'225)
Observing that 2 = x,, the lemma follows. ' '

7-23. LEMMA. Ewvery polynomial in the elements Xg, %\, Xgy <., Y15 Ysy - o5 Uys Uy, ... With coefficients
in A can, in a finite number of steps, be expressed as a polynomial in a set of elements of the form
(7-221) satisfying (7-222). :

(37) But clearly not all—e.g. not for an algebraically closed K.


http://rsta.royalsocietypublishing.org/

/

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

430 A. FROHLICH AND J. C. SHEPHERDSON ON

Progf. Let P be a polynomial in Xg, %, ..., % Y15 -5 Yps Uy, ..., 4, Evaluate A(z) for
i<max (p,r) and substitute for the corresponding x,, the expression u? —x,y?.

7-24. LEMMA. A polynomial P in the set of indeterminates (7-221) satisfying (7-222) is the square
of a polynomial in the ring extension of A by the x,, all n> 0, the y,, u, all n> 1, if and only if the
exponents in P are even.

Proof. If all exponents in P are even then P is obviously a square.

Assume conversely that P = @2, where ) is a polynomial of the type indicated. It follows
from 7-23(38) that @ is a polynomial in a set of indeterminates of the form (7-221) satisfying
(7-222), possibly with m, n replaced by m,; > m, n, > n. Butin @2 all exponents are even, which
is the required result. ‘

7-25. LEMMA. There exists an algorithm to decide whether an element of K has a square root in K.

Proof. Every element of K can in a finite number of steps be represented in the form P,
or P/Q, and hence in the form P or PQ/Q?, where P, @ are polynomials over Ain the x,, y,,, %,.
It thus suffices to prove 7-:25 for an element of K represented by a polynomial P over A in
the x,,9,, 4,.

Since K is the quotient field of the polynomial domain A[%, ¥y, Y, ...y Uy Uy -y X5 Xy -]
(where i, 1,, ... is the set of those positive integers not in the set {A(1),A(2), ...}), which is
a u.f.d., it follows that P is the square of an element in K if and only if it is the square of an
element of the ring extension of A by the elements x,,y,, #,. Hence we have only to apply
the algorithm 7-23 and, by 7-24, to inspect the exponents. ‘

7-26. LEMMA. There exists a splitting algorithm for K.

Proof. Let g(t) be a polynomial in K[¢]. Then g(#)? has coefficients in K. By 4-5 K has a
splitting algorithm. An irreducible factor of g(£)? in K[¢#] is either irreducible in K[¢] or is
the square of an irreducible polynomial in K[7], and the latter is the case if and only if all
exponents are even and all the coefficients have square roots in K. But by 7:25 we have an
algorithm for deciding this. Hence the lemma.

We conclude

7-27. THEOREM. There exists an explicit field K and an explicit extension K of K corresponding to
a simple algebraic extension of K, such that K has a splitting algorithm but K has not.

The examples given show that even with strong restrictions the existence of a splitting
algorithm in an extension field is not implied by the existence of such an algorithm in the
base field. A characterization of a class of extension fields with splitting algorithms is
given by

7-3. THEOREM. Let K be an explicit algebraic extension of an explicit field K with splitting algorithm.
Then K has a splitting algorithm if and only if there exists an algorithm to find the roots in K of a
polynomial with coefficients in K.

Proof. Assume that there exists an algorithm to decide whether a polynomial in K[x] has
a root in K. Enumerating the polynomials in K[x], and testing them in turn we can in
a finite number of steps find one, F(x) say, such that f(x)| F(x), f(x) being a given polynomial
in K[x]. By hypothesis we can find all the roots of F(x) in K. The roots of f(x) are among

(38) We use here not the existence of an algorithm to bring @ to this form, but merely the corollary
that there exists an expression of this form for Q.
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these and can thus be found. Hence K has a root algorithm, and hence (4-43) a splitting
algorithm.

The converse is trivial.

We shall call an extension field K of a field K separable in the wider sense if the maximal

algebraic extension in K of every field K’ between K and K is separable.
We shall use:

7-41. LEMMA. Let K be an explicit field with splitting algorithm. Then there exists a general
algorithm for splitting the polynomials of any given explicit polynomial domain K'[x], whenever K’ is
a finite explicit extension field of K separable in the wider sense and of the form K' = K (v}, ...,v,,), where
v;, is given as a transcendental over K;,_, or is given by an irreducible equation over K,,_,, where Ky = K,
K, =K(vy,...,v;) (n=1,....,m).

For the proof see van der Waerden (19304, pp. 130, 131). Van der Waerden states only
the existence of a splitting algorithm for a simple extension, separable in the wider sense.
But his proof in fact establishes the existence of a general splitting algorithm for all simple
extensions separable in the wider sense. The step from simple to finite extensions is trivial.

7-42. TureoreM. If K is an explicit field and K an explicit extension field of K, separable in the
wider sense, and if K has a splitting algorithm, and K an algebmzc dependence algorithm over K, then
K is a canonical extension of K.

Proof. Let U = {u, u,, ...} be a recursively enumerable set of words of K. Let U, be the
empty set, U, = {u, u,, ..., u,} and K, the explicit subfield of K generated by K and U,. We
shall prove that if 4, is algebraic over K,_, then we can find an irreducible equation for ,
over K, _,. The theorem then follows by taking for U the set of all words in K.

Let then u, be algebraic over K,_;. We may assume that we have already found an
irreducible equation for u, over K,_, for 1<r<n, whenever u, is algebraic over K,_,. By
testing in turn all polynomials in K,_,[x] we can find in a finite number of steps one Wthh
hasroot u,. The general algorithm of 7-41 applies to K, _,. Hence by splitting the polynomial
obtained into irreducible factors and testing these in turn we shall find one with root u,.

7-43. CoROLLARY. Euvery explicit algebraic extension of a perfect explicit field with splitting
algorithm, in particular of a prime field, is canonical, and hence if it is a normal extension it is unique to
within explicit isomorphism over the base field.

Proof. By 7-42 and 6-44.

7-5. THEOREM. Let K be an explicit field with splitting algorithm, and let C be a recursively
enumerable set of separable polynomials with coefficients in K. Then there exists a canonical extension
K of K corresponding to the splitting field of the polynomials in C.

Proof. Let { f,(x),f3(%), ...} be a recursive enumeration of the set C of polynomials. We
define K using the same sort of procedure as in 6:12. Let K’ be the standard polynomial
extension of K in the indeterminates x,, %,, .... We first define inductively a sequence of
explicit fields K = K° K, K2, ... as follows: the words of K™ are to consist of the words of K’
which are polynomials in x,, ..., x, only, addition and multiplication in X" are defined to be
the same as in K’, and equality in K" is defined by: f(x,, ..., x,) = xag(#y, ..., %,) if and only
if the difference f(x,,...,x,) —g(#,,...,x,) is, as a polynomial in x, with coeflicients in
K1, divisible by the polynomial ¢,(x,, ...,x,_;,%,) in x, with coefficients in K»~1. Here
P (%y5 ooy %,_q, %,) 1s defined thus: If the polynomials f(x),...,f,(*) all split into linear
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factors in K*~![x] then ¢,(x,...,%,_,%,) = %,—%;. Otherwise let f,(x) be the first of
Si(#®), ..., fn(x) which does not split completely into linear factors in K"~![x] and let
Pu(%15 .5 %,_1,%,) be the first(39) polynomial in x,,...,x, such that §,(xy,...,%,_, %) is
a non-linear irreducible factor of f,(x) in K*~![x]. Finally we define the words of K to be the
words of K', addition and multiplication in K to be the same as in K’, and we define W =z}
to be the same as W = ., W, where n is the least integer such that ¥/, W] are both words of K.
Using the results of 7-41 it follows as in 6:12 that K is an explicit field—and it is obviously
isomorphic to the splitting field of the set of polynomials in C.

7-6. THEOREM. Let K be a perfect explicit field. Then K has a canonical extension corresponding to
its algebraic closure if and only if it has a splitting algorithm.

Proof. If K has a splitting algorithm then the required extension field exists by 7-5.
Conversely if X is a canonical extension of K corresponding to its algebraic closure, then K is
algebraically closed and so by 4:43 has a splitting algorithm. By 6:26 K is a completely
explicit extension of K; hence by 7-1 K has a splitting algorithm.
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